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ABSTRACT 

We prove that the following statement is independent ofZFC + 7 CH: If Tis a 
superstable theory of power < 2~0, M ~ Nare models of Twith Q(M) = Q(N), 
then there is N'~ N with Q(N)= Q(N'). This generalizes Lachlan's (1972) 
result. 

§0. Introduction 

In [L], A. H. Lachlan proved the following three theorems for countable 

stable T. 

(LA) IfA __ 6, then there is a model M of T such that A __ M and Mis  locally 
atomic over A. 

(EP) If(Q(x),  A) has T-Vproperty,  then there is a model M o f  Tcontaining 
A such that Q(M) = Q(A). 

(ME) I f M  $ N a r e  models of  Twith Q(M) = Q(N), then there is N '  ~ Nwith 

Q(N') = Q(N). 

In this paper we investigate how far we can extend these theorems for 
uncountable stable theories. We use standard notation, such as can be found in 
[S]. Throughout, T (with possible subscripts) denotes a first-order theory in a 

language L = L(T), M, N are models of T, Q(x) is a predicate of  L(T). As 

usual, we assume that all models of  T under consideration are elementary 
submodels of a fixed monster model ~. I fp (x )  is a type of  T and A c_ ~, then 
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p(A) = {a ~ A : a  realizes p}. Formulas are special cases of types. For A _ ~, 

L(A) is the set of  formulas of  L with parameters from A. IfA = ~ ,  then we 
omit it in L(A). If ~0(x; ~ ) E L  and p is a type of  T, then 

p ~ ~o = {X(x)Ep:x(x)  = ~0(x; m) or X(x) = 7~0(x; m) for some m E~) .  

For a formula O(x)E L (~), [0] is the class of types of T containing 0. A type p 

over A is locally isolated over B _~ A if for every ~(x; 2)EL there is ,~(x)E 
L(B) such that (X(x)) U p(x) is consistent and Z(x) ~ p r ~0. A model M o f  T 

containing A is locally atomic over A if every m E M realizes over A a locally 
isolated (complete) type. The notion of  a locally atomic model is due to Shelah 
(Ft-atomic in [S]). For a finite set A _ L we define p r A as U (  p r ~0 : ~0 EA}. By 
IS, Lemma III, 2.1], the difference between a formula ~o and a finite set of  

formulas A is negligible. D denotes Shelah's degree defined on formulas. 

If  ~ ( x ; y ) E L ,  then for ~o(x)~L(~), R-M(~o(x);~(x;2)) is the pair: 

( (~(x;  y), x = y )  - -  Morely rank of  ~0(x), (~(x;  j~), x = y} - -  multiplicity of  

~0(x)). We also define R2(~0(x); ~t(x; 2)) as Shelah's binary ~-rank of (0(x). We 
order to X to by < lexicographically. In general we shall not use any tools of  

stable model theory developed after 1972. So in particular the acquaintance 
with forking is not necessary. This makes this paper accessible for wider range 
o f  readers. 

Let us present the set-theoretical background. We work in ZFC. ~ ,  ~ denote 
countable transitive models of  ZFC, and we consider T, M, L and so on as 

elements of these models. 
Let coy K be the minimal number of meager sets necessary to cover the real 

line. Let coy L be the minimal number of  sets of  Lebesgue measure zero 

necessary to cover the real line. ~:~ is the minimal power of a partition of  the 
real line into compact sets. For f ,  g E o, to we define f~g  iff for all but finitely 

many n,f(n) < g ( n ) .  
We define 

1~ -- min{ lF l :  F c_ o, to & VgE,Oto 3 f E F  -1 f--3g} 
and 

b = m i n { I F l : F _ C  o, to& Vg~O, to 3 f E F g - 3 f } .  

We have R, < 1~, cov K, cov L; b + c o v  K < b < ~:~ < 2 a0. The reader may find 

more information on these coefficients for example in [K], [M1 ], [M2] or [N]. 
MA, CH denote Martin's axiom and continuum hypothesis, respectively. 

For A C_ $ we say that (Q(x), A) has T-Vproper ty  if for every O(x)EL(A) 
with O(x) t- Q(x), if O(x) is consistent then there is a ~A such that O(a) holds. 
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We say that T has extension property if T satisfies (EP). T has model 
extension property if T satisfies (ME). 

Let us go back to Lachlan's theorems. Since Lachlan proved them, some 
people tried to generalize them for uncountable stable theories. The attention 
was focused particularly on (ME). V. Harnik in [H] really proved it for 
uncountable stable theories (slightly generalizing Lachlan's proof), however he 
added additional assumption that M is I T I- compact. J. Baldwin in [B] gave 
another proof of (ME) for countable stable T (see also [Ls]). In this paper we 
show that there are stable theories of power R~ without model extension 
property, so neither of (LA), (EP), (ME) can be proved for uncountable stable 
theories. However, the situation for superstable theories is quite different. We 
prove for example that it is consistent with ZFC + 7 CH that every superstable 
Tofpower < 2~o satisfies (LA), (EP) and (ME). Also we show that it may be the 
case that 7CH holds and there is a superstable T of power R1 without model 
extension property. In the first section we present examples, in the second one 
theorems. 

§1. Examples 

We define here 4 uncountable stable theories To, Tl, /'2, T3. The following 
diagram visualizes connections between them. 

To 

L 
,T3 

An arrow from Ti to Tj indicates that Tj is similar to Ti, but more complicated, 
and if two arrows are parallel then the complication has the same character. 

EXAMPLE 0. We construct here a superstable theory To of power 
2~0 without extension property. The set A in (EP) is countable here and 
Q(x) is even strongly minimal. To is a variant of the theory from ex. IV, 2.13(3) 
in [S]. The language of To consists of unary predicates Q(x), P~(x) for q ~ '°>2, 
unary function symbols f~ for ~/~'°2 and constants m, for n < co. The 
axioms of To are 

0.1. All the predicates are consistent. 
0.2. P,~(x)+ Q.(x). 
0.3. P,(x)~'P,o~o>(x)+ P,o~,>(x). 
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0.4. f~ is a function mapping P~ onto Q and for every y satisfying Q, 
f~- ~ ({ y}) is infinite. 

0.5. Q(m,) for n < co. 
0.6. Ifvo.~ r /~ ~2, Ivol -- n and v = v0n<l - ~/(n)>, then 

Pv(x)"" f~(x) = m, 

is an axion of To. 
Figure 1 shows the action off~ on P~ for r / ~  0. For other r/'s the correspond- 

ing picture would look similar. 

e~ 

r i c O  f~ ~- m2 

(2 

Fig. 1. 

Clearly To is a complete, superstable theory. Moreover, Q(x) is strongly 
minimal.  Let A -- {m,:  n < to} .  Of  course (Q(x),A) has T-V  property. 
Assume that M ~ To. Let a E P~ (M). Choose the unique r /~ o,2 such that for 
n <to, P,1r,(a) holds in M. So 0.6 implies that f~(a) + m, for every n. This 
means that Q(M) 4; Q(A). 

EXAMPLE 1. A superstable TI of power 2~o without model  extension 
property. The language of/ '1 consists of 

(a) unary predicates Q(x), P(x), P~(x) for ~/~ ">2, i < to, 
(b) constants m. for n < to, 
(c) unary function symbols F andf~ for ~/~ °~2, 0 < i < to, 
(d) ternary predicate symbols P~(x, y, z) for i < to. 
The main idea underlying the definition of  T~ consists in imitating within a 

model  of/ '1 many "partial" versions of To. The pair of models M, N in (ME) 
will satisfy Q(M)= Q(N)= the set of  constants of  L(TO. The superscripts 
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i < to are added to make the structure of T~ on P outside the P~ 's  trivial. 

Instead of  P'(x,  y, z) we shall write sometimes P~ (z), regarding it as a formula 
with variable z and parameters x, y. The axioms of  T~ are: 

1.1. All the predicates of T~ are consistent. 
1.2. P(x) + Q(x). 
1.3. P'~(x)--"P(x); P'~(x)---'-IP~(x) for i ~ j .  

1.4. P~ (x) ~ P~°(0) (x) + P~°(1) (x). 
1.5. Q(m,) for n < to. 

1.6. F is a function mapping P onto Q; pre-image of  any point in Q by F is 

infinite. 

1.7. F(x) = m, ~ P~ (x). 
1.8. e~(x, y, z)---, P~ (x) & P~ (y) & e~+~(z) & x v ~ y & P~(y, x, z). 
1.9. ( Vx ,  y)(P~ (x) & e~ (y) & x ~ y ---, 3 z e°(x, y, z)). 
1.10. For i > 0, ( V x ,  y)(x ÷ y & ( 3 v, t)(P~-~(v, t, x) & P~-l(v, t, y ) ) ~  

( ~ z)(P'(x, y, z))). 
1.11. For i > 0, ( V x ) (p io(x)~(  3 v, t)(P~-~(v, t, x)). 
1.12. For r/E°'>2, i < t o ,  ( V x ,  y ) ( 3 z p i ( x , y , z ) - * 3 z p i ( x , y , z )  & 

e~+'(z)). 
Up to now we have built a general frame of  T~. It is presented in Figure 2. 

S P 

/.F/0 t'/,/1 iT/2 

p2 

Fig. 2. 
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We are left with determining properties of the f~ 's. First of all 
1.13. f~ maps P~ onto Q; the pre-image of any point in Q byf~ is infinite. 
On every P~r functionsf~ + ~ will be defined to imitate To. If we imitated it too 

faithfully, then there would be no model M of T~ satisfying Q ( M ) =  

{ran: n <to}. This will be the point in proving 7(ME). The degree of 
similarity between To and T~ on P~ will depend on the degree of similarity 
between x and y in the tree {P~ : r/E °'>2}. Let us introduce the following 
abbreviation for x, y satisfying P~ : 

(x t n • y t n ) ~  A{P~(x)'.-,  P~(y)  : r/~ n2}, 

(x  t n = y t n & x ( n )  v~ y ( n ) ) ~ ( x  t n = y t n )  & -~(x ~ (n + 1 ) = y  t (n + 1)). 

Here are the axioms describing thef~ 's. 
1.14. If P~r- ~ is consistent, then f i  maps P~- ~ onto Q; the pre-image of any 

point in Q by f i  is infinite on P~- ~. 
1.15. Let i , n < t o ,  ~1~'°2, Vo<rl, Iv01 = n ,  v f f i v ~ ( 1 - r l ( n ) ) .  Then the 

following is an axiom of T~: 

(V  x ,  yX  3 z e i (x ,  y,  z)  & x t  n • y t n ~ (  V z P~xy(Z)~ 3~+l(z) ffi m,  ~ P~+l(z))). 

1.16. L e t i ,  k , t  < t o ,  rl, v~°~2. 

(a) If To)-"f~-l({mk})- fcl({mt}) ", then the following is an axion 
of T~: 

( V  x ,  y)(  3 z P ' (x ,  y ,  z ) ~ ( V  z ) ( P ~ ( z )  & f~+l (z )  ffi mk ~ f~+l(Z) = m,)). 

(b) If To~-"(Vy v~ mo . . . . .  m k ) ( Q ( y ) ~ f ~ - ~ ( { y } )  C_ f~-~({mt}))', 
then the following is an axiom of Tl: 

( V  x ,  y X  3 z P~(x, y ,  z ) - - , ( V  z X P ~ ( z )  & J~+ ~(z) ~ mo, . . . , m k ~  f~+~(z) = mr)). 

1.17. Let i, n , k  < t o ,  qE°~2, v ~ ' ° 2 ,  Ivl > n a n d  

To ~ ( V  y ÷ mo, . . . , m k ) ( a ( y ) "  ( 3 x)(P~r, + t(x) & f~(x)  ffi y)). 

Then the following is an axiom of T~: 

( V  x ,  yX  V t 4= mo, . . . .  mkX 3 z PJ(x, y,  z )  & Q(t)  & x t n = y t n & x (n )  ~ y (n)  

--" 3 z P ~ ( z )  & P~+'(z) & f~+l (z )  = t). 

1.1-1.17 are all axioms of T~. Roughly speaking, 1.15 determines similarity 
between To and T~ on P ~  "up to level n" if x t n = y t n, while 1.16 and 1.17 
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complete the structure on P~ in such a way that "nothing new" can be said 

about Q. 
Once more TI is superstable and Q(x) is strongly minimal. Now we prove 

7(ME). There is a countable model N o f  Tt such that Q(N) -- (m,  : n < co}. In 

order to construct such a model it is sufficient to ensure that for every 

x ~ y ~ N there is n < co such that x P n = y t n does not hold in N. Thus 

there is also N'~N with Q(N')= Q(N). To complete the proof  it suffices 

to prove that there is no model M of  Tt of  power > 2~0 with Q(M)= 
Q(N). Suppose to the contrary that M is such a model. First, because of  1.7, 

P(M) = U {P~ (M) : i < co }. Choose the minimal i < co such that I P~ (M) I > 
2 ~o. I f / =  0, then by 1.12 we get v, t such that IP~'7~(M) I > 2~o, and therefore 

we can pick x ~ y ~ P~t- 1 (M) such that for every n < co, x t n = y t n. Anyway, 

we get x ,y  such that P ~ ( M ) ÷ ~  and x t n = y t n  for each n. So 1.14 

determines on P~y(M) a structure similar to that of  To. Let a ~ P~ (M). Choose 
i + 1  r/E °'2 such that for every n < co, P~rn (a) holds. 1.14 implies thatfl~+~(a) ~ mn 

for every n, thus Q(M) ÷ {mn : n < co}. This means that 7(ME) is established. 

To and Tt are superstable of  power 2 ~0. We shall see in the next section that in 

ZFC it is impossible to find superstable T without extension property and of 

power < 2~0. However, if we add some extra axioms to ZFC, we can find such a 

T. Below we show how it can be done. 

In the construction of  To we connected with every f~ the forbidden set 

(r/} _c_ °'2 with the property that for any a realizing {P, Tr,,(x): n < co} we had 

f , (a )  # m~, n < co. Clearly {r/} can be replaced by any nowhere dense closed 
set N _ 0"2. Let {N~ : a < x~) be a family of  NWD closed disjoint sets covering 

'°2. We can construct T6 in such a way that instead of  functions {f~: r/~ '°2} 

we have functions { f~ : a < x~}, andfo is connected with N~ in the same way as 

f~ is connected with (r/}. Q(x) will no longer be strongly minimal, but  T6 will 
still be superstable (one can split Q(x) into predicates Q~(x), a < tq). If  we go 

from T6 to T[ in such a way as we went from To to T~, we get a superstable T~ of  

power x~ without model extension property. It is well known that ZFC + Xl --- 
RI + "2 ~0 large" is relatively consistent (see [M1] or [N]). 

EXAMPLE 2. We construct here a stable 7"2 of  power R1 without extension 

property. The set A in (EP) has power RI here. This is a preparatory step in 

constructing a stable T3 of  power RI without model extension property. T2 will 

be similar to To, but more complicated. We can use only cormany functionsf~, 

so we have to "embed" into/ '2 a topological space which is a union of  co~-many 

NWD closed sets. A good candidate for such a space is 0"col with product 
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topology. Let Nr = { f E  °'co I : V n f (n)  < a}. Clearly N, is dosed and NWD for 

a < col and o, co~ is the increasing union o fNr ,  a < co~. On the other hand, we 

want to have a possibility to imitate fragments of T2 in T3 with a certain 
prescribed degree of faithfulness. This is why we use functions instead of 

predicates to describe '°col. The language of T2 consists of 
(a) unary predicates e(x), Q(x), Q"(x) for n > 0 and Q°"(x) for 0 < a < col, 
(b) constants m~ for 0 < n < co, r /~ "co~, 

(c) constants m~'" for 0 < a < c o ,  and t/E'°>col satisfying r/t I t / I -  1E 
,o>co -a and r/(lq I - 1) > co .a, 

(d) unary function symbols f "  for 0 < n < co a n d f  '°r for 0 < a < co~. 
Instead of  writing down all axioms of T2, which might be rather tedious, we 

determine T1 by exhibiting models of T2 restricted to sublanguages of  L(T2) 
with only countably many function symbols. For a < COl let Lr consist of  all 

predicates and constants of  L(T2), unary function symbols f "  for 0 < n < CO 

a n d f  '°p for 0 < f l  < a. We show a model Mr of T2 r Lr. The universe of M~ is 

(the set of  constants of L( T2)) O { f ~ °'col : 3 n f(n ) > coa}. 

Let Q(M,) be the set of  constants of  L(T2), P(M~)= IM~I - Q(Mr) and we 
define all other symbols of Lr on M~ so that the following hold. 

2.1. Q"(M~) for 0 < n  <co  and Q°'B(Mr) for 0 < f l  < a  are all pairwise 
disjoint and contained in Q(Mr). 

2.2. Q"(m~), Q°"(m~'P). 
2.3. f " ,  fop are functions mapping P(Mr) onto Q"(M,), Q°'P(M~) re- 

spectively. 
2.4. For q ~ "col, v ~ kco~ with v ,~ tl, (Vx) ( f" (x)  = m~ ~ f k ( x )  = m~) holds 

in Mr. 
2.5. For r/E"co, such that m~ 'p is a constant of  L(T2), f°P(x)-= m~ 'p "-" 

f"(x)  = mg holds in M~. 

Let gEP(Mr). For 0 < n < co we define simply f " ( g ) =  mfrs,. Let 0 < p  < a. 
Choose the minimal k < co such that g(k) > top. We define fOp(g) = rn~'~k + t. It 

is tedious but standard to check that Th(Mr) is stable and Th(Mr) C Th(Mp) 

for a < p  < co~. Thus we can define 

T2 = l,J {Th(M.) : a < co,}. 

Let A be the set of  constants of  L (/'2). It is easy to see that (Q(x), A) has T -  V 
property. We need only check that there is no model M of/ '2 with Q(M) -- 
Q(A). Suppose that Mis  such a model. Let a ~P(M). For every n > 0 we have 
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P(M) = I..) { ( f , ) -  '({m~ }): q ~ "to1}. 

Thus there is q E too,) 1 such that for every n > 0, f"(a) = mgr,. Let fl be any 

ordinal < to l  such that for every n < t o ,  q(n)<to, O. So by 2.5 we have 

f°'P(a)q~ Q(A), because for no n > 0, mg'~, is a constant of  L(T2). 

EXAMPLE 3 of a stable T3 of power R~ without model extension property. 

The transition from T2 to I"3 is similar to that from To to T~. We shall state 
explicitly only some axioms of T3, and then construct a model of  T3. L(T3) 
consists of  

(a) unary predicates Q(x), Q"(x) for n < to, Q°'~(x) for 0 < a < tol, V(x) 
and V~(x) for i < to, 

(b) constants of  L(T2) and m ° for n < to, 

(c) unary function symbols F, fp for 0 < n < co, i <  to and f ~  for 
0 <or < to~, 0 < i  < t o ,  

(d) ternary predicate symbols Pi(x, y, z) for i < to. 

The pair of  models M, N in (ME) will satisfy Q(M) = Q(N) = the set of  
constants of  L(T3). As in Example 1, instead of  P~(x, y, z) we shall write 
sometimes P',~(z). Here are some axioms of T3. 

3.1. All the predicates of T~ are consistent. 
3.2. V(x) + Q(x). 
3.3. V i for i < to are pairwise disjoint and imply V. 

3.4. Q" for n < to, QO~ for 0 < a < to~ are pairwise disjoint and imply Q. 
n m n 3.5. Q°(m°), Q ( 7 )  for n > 0 ,  Q°~(m~). 

3.6. F i s  a function mapping Vonto Q0. 

3.7. F(x) = m°, ~ V"(x). 
3.8. Pi(x, y, z ) ~  V~(x) & V~(y) & V'+~(z) & x v~ y & Pi(y, x, z). 
3.9. (Vx ,  y)(V°(x) & V°(y) & x  4~y -~ 3zP°(x ,y , z ) ) .  
3.10. For i > 0 ,  (Vx ,  y ) ( x ~ y  & (3v ,  t)(P~-~(v,t,x) & P~-~(v, t ,y))~ 

3 z Pi(x, y, = z)). 
3.11. For i > 0, ( V x ) ( V i ( x ) ~ (  3 v, t)(P i -I(v, t, x))). 

Let L '  be the sublanguage of L(T3) consisting of all its predicates, constants 

and function symbol F. Let M'  be a model of 3.1-3.11 such that Q(M') is the 
set of  constants of  L(T3) and 

(1) for every x, y E M',  if P~ (M') ~ ~ then [ P~ (M') [ = 2 ~0, 
(2) [ V°(M')[ = 2 ~o. 

We shall expand M'  to a model for L(T~). fl' for n > 0, i < to and fp~ for 
0 < a < to~, i > 0, will be defined so that 
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3.1 2. For every x, y ~ M', if P~ (M') ~ Z then f,"+ 1, fPg, map P~r (M') onto 
Q,,  Q,O~ respectively. 

3.1 3. f~ maps v ° onto Q". 

First we define f r  on M'  so that 
(3) for every x, y E M ' ,  if P~(M')q:  25 then for every r/~'°col there is 

exactly one z EP~(M') ,  and for every z ~P'xr(M') there is r/E °'col, such that 

f o r n > O , M ' ¢ f T + l ( z ) =  " l'glrl t n , 

(4) for every t /E °'co~ there is exactly one z ~ V°(M ') and for every z E 
V°(M ') there is r /~ ,oco~ such that for n > O, M'  ~ f~(z) = m~r,. 

Fix x, y E M'  such that P~ (M') ÷ 25. The only thing left is to define functions 

fiftY1 for 0 < a < tom on P~(M'). As x, y are fixed, we can drop the index i inf,+ 1, 
f~'~?~ and P~. We have already embedded '°co~ into P . .  Let k < co be minimal 

such thatf~(x) ~ fp(y)  holds in M'.f°'"'s are chosen so that the following hold. 
3.14. For n < k  and ~/E"co~ such that m~ '~ is a constant of  L(T3), 

(f'°"(z) = m~ ~ ,-- f " ( z )  = rng) holds in P~(M') U Q(M'). 
3.1 5. For r /~ kco~ and v ~ o,> col, if T2 k-- f'°"(z) = m~'" ---, fk  (Z) = m~ then for 

every r/ '~ 'co~ with r/-~ 1/' we have in P~(M'): 

( f ' °~) - l ({m~})  N ( f t)- l({m~,})  ~ 25 
and 

(f°'~)-~({m~" }) C_ ( f k ) -  Z((m~ }). 

3.16. In P~(M') we have (fo , , ) - i  o~ ({rn, }) _ ( f~)- l ({rn~P})  iff the same 

holds in any model of/'2. 
Axiom 3.1 4 ensures that when k --- ~ then the structure on Pxy(M') U Q(M') 
converges to that of  a model of  T2. 3.1 5 and 3.1 6 ensure that on Q(M') no new 
connections arise. It is easy to see that we can define f ' ~  for 0 < a < o91 on 
P,~(M') according to 3.12-3.16. Thus M'  with the just defined functions 
becomes a structure M for L(T3). Let T3 -- Th(M). It is possible to realize that 
some definitional extension of T3 admits elimination ofquantifiers and that T3 

is stable. Now we shall show that T3 does not have model extension property. 

First, exactly as in Example 1, we can find models N ~ N'  of T3 such that 

Q(N') = Q(N) = the set of  constants of  L(T3). Thus to prove n(ME) it suffices 

to observe that there is no model M of T3 of power > 2~0 with Q(M) = Q(N). 
Suppose to the contrary that there is such an M. Then, because of 3.6 and 3.7, 

V(M) = U { V~(M) : i < co }. Choose the minimal i < co such that I V~(M) I > 
2~*. As in Example 1 we conclude that there are x , y ~ V ( M )  such that 
P~(M)  ~ 25 and for every n > 0, f~(x)  = f~ (y )  holds. But now, by 3.14 we 
can proceed exactly as in Example 2 to get a contradiction. 
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§2. Theorems 

This section stands in opposition to the previous one. Instead of  construct- 
ing counterexamples to (LA), (EP) and (ME), we prove that (LA), (EP) and 
(ME) can be true for uncountable superstable theories of power < 2 R0. First let 

us notice the following 

FACT 2.1. Let T be a stable theory. 
(1) If T satisfies (LA) then T has extension property. 
(2) If  T has extension property then T has model extension property. 

PROOF. (1) Suppose that (Q(x),A) has T - V  property. Let M ~_A be a 
locally atomic over A model of T. Thus M omits q(x) = {Q(x), x ÷ m: 
m ~ Q(A)}. This means that Q(M) = Q(A). 

(2) Suppose that M ~ N  are models of T with Q(M)= Q(N). Take 
a E N  - M and b ~ ~ realizing over N the non-forking extension of tp(alM) 
(those not familiar with forking can look at the relevant place in [L] on how to 
choose b). In ILl or [B] it is proved that (Q(x), N U {b}) has T -  Vproperty, so 
we are done. 

The main result in this section is 

THEOREM 2.2. Assume that T is superstable, A C ~ and one of(A), (B), (C) 
holds, where 

(A) I T I < c o v  K, 

(B) ITI <b,  
(C) I T I < min{cov L, b}. 

Then there is a model M ~_ A o f T  which is locally atomic over A. 

REMARK. The model-theorist not interested in parts (B), (C) of Theorem 
2.2 may omit  reading the proofs of these parts. Part (A) is sufficient to draw 
Corollary 2.11 below. Parts (B), (C) are motivated by the at tempt  to find in 
Theorem 2.2 the largest possible cardinal with which to replace cov K. At 
present this cardinal is cov K + b + rain{coy L, b} which is still _-< b _-< x~. 

Clearly to prove Theorem 2.2 it suffices to prove 

THEOREM 2.3. Assume that T is superstable, A C_ 6, O(x) is a consistent 
formula from L(A ) and (A), (B) or (C) from Theorem 2.2 holds. Then there is a 
locally isolated p ~ [0] t~ S(A). 



70 L. NEWELSKI Isr. J. Math. 

PROOF OF 2.3. First, if there is an isolatedp E[0] n S(A), we are done. So 
we may assume 

(a) There is no isolated p E[0] n S(A). 

For ~o(x; 2 ) ~ L  we define 

N(~o) = { p ~[0]  n S(A): there is no X(x)Ep(x) such that X(x) t-  p t ~o}. 

Thus in order to prove Theorem 2.3 it suffices to show 

(13) [0] n S(A) ~ U {N(~o) : ~oEL}. 

FACT 2.4. For every ~o(x;2)~L there is ~(x;  ~0)EL such that for every 
p ~N(~o) and for every W(x)~ p(x) there is m ~A such that ~(x;  m)  & W(x) is 
consistent and [~(x; m ) &  W(x)] n N(~o) = ~ .  In particular p ( x ) ~ - 7 ~ ( x ;  m). 

PRooF. Let n = R2(x = x; ~o(x; 2)) + 1. We define 

• (x ;20)= ^ ~o(x;2°)& ^ 7~0(x;2~), 
i < n  i < n  

where we assume that 2 °, i < n, y~, i < n are disjoint and ~0 is their 
concatenation. Now let v?(x)~p(x). As R2(W(x); ~0(x; 2)) < n, we can find 
m ~A such that ~(x;  r~) & 'tJ(x) is consistent and for every a ~A ,  either 
~o(x; a) & tl~(x; m)  & W(x) or 7 ~o(x; a) & ~(x;  m) & W(x) is inconsistent. But 
this means that whenever q(x)ES(A) n [~(x; m) & W(x)] then ~(x ;  m)  & 
• (x) ~-q t ~o, and so q ~ N(~o). 

REMARK. Fact 2.4 shows that N(~o) is nowhere dense in [0] n S(A). Thus if 
T were countable we could finish the proof  with the remark that no compact 
space can be covered by countably many nowhere dense sets. However, there 
are compact spaces which can be covered by o9~-many NWD sets, so this 
argument does not work in our case. 

LEMMA 2.5. Assume that p ~N(~o). Then there is a formula X(x; ;~)~L 
such that for every formula q/(x) E p(x) there are r~ ~A for i < to such that for 
i 4~ j < to, X(x; m~) & ~(x) is consistent and X(x; m~) ~ "~Z(x; r~). 

PRoov. Let ~l~(x; t0) be the formula given by Fact 2.4. Let L(~)  be the set of  
Boolean combinations of formulas ~(x ;  ~) ,  i < to, where we assume that ~ ,  
i < to, are pairwise disjoint. A typical element of L(~)  can be written down as 
X(x; ~0), where ~0 is a tuple of elements of {~ : i < 09}. 
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Let (n, k) be < -m in im a l  such that for some Z'(x; ~0)EL(~),  for every 
formula W(x)E p(x) there is rh EA such that 

(1) R - M(x'(x;  rh); tl,(x; to)) < (n, k), 
(2) Z'(x; to) & W(x) is consistent, and 
(3) p(x) I--- 7)((x;  rh). 

By Fact 2.4 we see that there is Z'(x; ~o) such that for every W(x) ~ p(x) there is 
rh ~A such that (1), (2), (3) hold for some (no, k0). So (n, k) is the < -minimal 
element of some non-empty subset of o9 × o9. 

Case 1. k > 1. So there is W0(x)E p(x) such that whenever rh ~A satisfies 
(1), (2) and (3) with W replaced by W0, then R - M(X'(x; rh); ~)  -- (n, k - 1). 
Consider 

Zo(X; ~') = Z'(x; to) & Z'(x; 2~) and X~(Z; ~') = Z'(x; t0) & 7;((x;  ~), 

where we assume that to, ~1 are disjoint and ~' is their concatenation. By the 
minimality of (n, k), there is W~(x)Ep(x) such that W~(x)l---teo(x) and for 
every rh EA the following holds for t = 0, 1. 

(4) I f  Z,(x;rh)&~F~(x) is consistent and p(x)F-Tz , (x;rh)  then 
R - M(zt(x;  th); ~)  > (n, k - 1). 

Now we can prove the lemma in this case. Let W(x) be any formula from 
p(x). We define by induction on i <09 formulas Wi(x)Ep(x)  and rh iEA 
such that 

(a) p(x) F 7X'(x; rhi), ; ((x;  rhi) & Wi(x) is consistent, 
(b) V°(x) = q'(x) & ~'~(x), 
(c) ~t'i+~(x) = q?i(x) & 7Z'(x; rhi), and 
(d) R - M(z ' (x ;  rhi); O) = (n, k - 1). 

The definition is straightforward by the definition of (n, k) and the choice 
of Wo. Choose Z(x; t ) E L  and r ~ A  for i < o9 so that X(x; m i )=  W~(x) & 
g'(x; rhi). We have to prove that g(x; mi) F- 7g(x; r~j) for i > j .  Suppose not. 
Then we have that g0(x; rhinrhj)&Wl(x); Zl(x; rhinrhj) & uL~(x) are both 
consistent, and so by (4) we have 

R -M(zt(x; f f~inthj) ;~)>=(n,k  - 1) fo r t  = 0 ,  1. 

But Zt EL(O),  so we get R - M(Z'(x;  rhi); t/,) >__ (n, k), contradicting (d). 

Case 2. k -- 1. Then by (~) (and the definition of R - M), we have n >_- 1. 
Once more there is tFo(X)Ep(x ) such that whenever th ~A satisfies (2), (3) 
with ~ replaced by ~0 then R - M(z ' (x ;  th); ~ )  >_- (n - l, 1). Consider 
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•3(X; ~') --'~ Z'( x ,  ~0) & Zt(X; ~1) & "l~'(X; ~2), 

where we assume that ~ 0, ~1, ~2 are disjoint and ~' is their concatenation. By 
the minimality of (n, k) there is ~F~(x)Ep(x) such that ~gm(X)~Fo(x) and 
for every Jh CA the following holds: 

(5) I f  X3(x;rh)&~F~(x) is consistent and p(x)b-7)6(x;rh) then R -  
M(X3(x , tf/), ¢I)) >_-- (m - 1, 1). 

Now let ~ (x)  be any formula from p(x). Let us define ~ ( x )  and rh~ CA for 
i < to so that (a), (b), (c) and 

(d') (n, 1) > R - M(z ' (x ;  rh~); O) >= (n - 1, 1) 

hold. By properties of R - M rank we can choose an increasing sequence 

(is : s < aJ ) such that 
(6) R - M(Z'(x;  ~h~,) & Z'(x; rhi~) & "~Z'(x; rhi,); O) < (n - 1, 1) for every 

s < t o ,  and v, r > s .  
Choose X(x; ¢ ) ~ L  and ms CA so that for s < to, 

(7) X(x; ms) = ~t,(x) & X'(x; rh~,+,) & 7X'(x; rh,,). 
Because of  (a), (b), (c), (d'), for every s < to, ~g(x) & Z(x; rhs) is consistent. 
Suppose that s < v. We shall prove that Z(x; r~s) & %(x; n~v) is inconsistent. 
Because of  (7) we can assume that v >  s + 1. Let 

O (x) = & z ' ( x ;  02(x) = & z ' ( x ;  they), 

03(x) = ~,(x)  & Z'(x; rh,,+,). 

By (5) and (6) we have O,(x) & 03(x) & -102(x) is inconsistent. This means that 
%(x; ms) & Z(x; my) is inconsistent. Thus we have proved the lemma. 

Lemma 2.5 justifies the following definition. For ~0(x; y), X(x; ¢ ) E L  we 
define N(~0, Z) = ( p E N(~0): for every formula ~F(x) E p(x) there are m~ CA for 
i < t o  such that g(x;  r~)&~F(x) is consistent and for i ÷ j ,  X(x; n~;)t- 

-l(x; n~j)}. So by Lemma 2.5 we have 

= U Z) :z  e L ) .  

Now the proof  of Theorem 2.3 splits into two cases, depending on which of(A), 
(B), (C) from the statement of  Theorem 2.2 holds. 

Case I. ITI < c o v K .  

L~MMA 2.6. For every consistent formula O'(x)EL(A) with O'(x)t-O(x), 
there are consistent formulas ~o,(x)~L(A) for n < to such that q~,(x)t- O'(x), 
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for n ¢=m; ¢,(x) t - - l¢ , , (x) ;  and for every ~ , x E L  there is n <to such that 
N(~, X) n [~,] ---- ~ .  

PROOF. Suppose not. We shall construct formulas ~u,(x;~,)EL(A) for 
n > 0 and parameters r ~  EA for r/E o,>to such that the following hold. 

(1) ~ut,l(x; m,) is consistent and ~l~l(x; m,)~-O'(x), 
(2) for r/.~v E'°>to,  ~l,l(z; m,)~- ~ul,r(x; m.), and 
(3) if q, v E ,o>to are incomparable then ~ul,l(x; r~ , )~  ~l,l(x; r~,). 
How to construct such a tree? First, there are ~, X such that N((a, X) N [0'] ÷ 

~ .  Otherwise by (u) we could choose ~,(x), n < co, easily (and also (I]) and the 
theorem would be proved). So we can choose ~ul. Further on the construction of  
~u,(x; 9,) and m,,  r/E o,>to, relies on the definition of N(~, X). Clearly the 
existence of  such a tree contradicts the superstability of T, so we get a 
contradiction. 

Using Lemma 2.6 we can conclude the proof  of Theorem 2.3 in this case. We 
can construct a tree of  formulas {~,(x) : r/E ,o>to} ___ L(A) such that 

(a) ~ o ( x )  = O(x), 
(b) for r/-~ v, ~,(x) F- ~ (x ) ,  ~,(x) is consistent, 
(c) if q, v E ~>to are incomparable then ~,(x) t--- 7 ~ ( x ) ,  and 
(d) for every r/E ~>to, ~, X E L ,  there is n < to such that 

N(~, Z) n [~,,o<,,>] = ~ .  

For ~, X E L let 

N'(~, )C) --- { f E  ,oto: there is p EN(~ ,  X) such that 
for every n < w, p(x) ~- ~st,(x)}. 

By (d) we see that N'(~,X) is nowhere dense. So finally we can use 
the assumption that ITI < c o v K .  Indeed, as ILl < c o v K ,  we have 
,oto ÷ U {N'(~, X) : ~, x E L }  and that means that (13) and the whole theorem 
is proved in this case. 

Case II. I T I < 5 or I T I < min{cov L, b}. Here the proof  will be somewhat 
more complicated. We have to reformulate Lemma 2.6. 

LEMMA 2.7. Assume that I T I < 5  or I T l < c o v L .  Then for every 
consistent formula O'(x)EL(A) with O'(x)~O(x), there are consistent 
formulas ~, (x)EL(A)  for n < w  such that ~,(x)~O'(x) ,  for n ÷ m ;  
~,(x) ~ 7 ~m(x); and for every ~, )~ EL , fo r  all but finitely many n < to we have 
N(qh X) n [q~,] = 12i. 

PROOF. (1) First assume that IT i <  ~. Let V ®, 3 ~ mean "for all but 
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finitely many" and "there are infinitely many", respectively. We shall construct 

by induction on k < t o  formulas g k ( X ; Y k ) ~ L  and parameters 
{ mk  " rl ~ k'-to } C A  SO that 

(1) g0(x; r ~ )  = O'(x), gl,l(x; r~ k) is consistent, 

(2) if r/,~ v E k-,.to then girl(x; m k) t-  gl,l(x; mk), and 

(3) if q, v ~ k>=to are incomparable then girl(x; m #) t-- 7 gl,l(x; mk). 
For k = 1 we can find gj and {r~ • 1/~ i>to} by Lemma 2.5, similarly as in the 
proof of Lemma 2.6 (as otherwise Lemma 2.7, as well as the theorem, would be 
proved). Suppose that we have constructed g 0 , . . . ,  gk and {n~k" r/Ek~to}. 

Suppose also that for some q~, Z ~ L, 

(4) 3 ®no q °°nl. • • q °°nk-i (if~/ = (no . . . .  , n k - l )  then 

[gk(X; m~)] n N(q~, ;() ~ IZ/). 
Then by the definition of N(~0, X) we can find gk+t and {m~ +~'q  E k+l>_to} 
such that (1), (2), (3) hold for k + 1. However, if we really managed to carry 

out this construction for every k < to, then it would contradict the superstabi- 

lity of  T (by compactness). Thus for some k such that g 0 , . . . ,  gk and 
{m~" q E k:to} still satisfy (1), (2) and (3), we have for every q~, )~ EL:  

(5) V~n0 V~nl . . .  V~nk_~  ( ifq = (no . . . .  , n k - i )  then 

[gk(X; mDln N(~0, X) = ~ ) .  
Fix ~o, X ~ L .  By (5) we can define n(~o, 2) < 09 and functions g~(~a, Z) : 'to --" to 
for i = 1 , . . . ,  k - 1 such that if q ~ kto satisfies r/(0) > n(~0, X) and q(i) > 

g,(~o, Z)(~/t i) for i > 0 then 

D]n N(¢, Z) = 

As {TI <b ,  we can find functions g , , . . .  , g k _ l E ' ° t o  such that for every 

~o, x E L ,  
g~(~o,X)(( . ,g~( . )  . . . . .  g~_t(.)))--3gi for i > 0 .  

For n < to we define rl, = (n ,  g l ( n ) , . . . ,  g k - l ( n ) ) ,  and let ~o,(x) = gk(X; ink. ). 

We shall check that ~0,, n < to, satisfy our requirements. So let ~0, X E L .  Take 

n < to so large that for i > 0, 

gi(~o,Z)((n,  g t ( n ) , . .  . , g g _ l ( n ) ) ) < g ~ ( n )  and n>n(~o,X).  

By the choice of functions gi(~0, X) and n((p, X) we see that [~,] = [gk(X; m~, )] is 
disjoint to N(fp, •), so the lemma is proved in this case. 

(2) Now assume that [ T[ < c o v  L. Let 3 >=k mean "there are > k-many". 
for 0 < k ,  n < t o  let T~ be the tree k-->[2",2"+1). We shall construct for 
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0 < k < c o  formulas ~Uk(X;2k)UL and parameters { r~k ' r /~7  -k, some n} 

such that: 
(1) ~ui~l(x; r~k)~ O'(X) and ~ul~i(x; r~ k) is consistent, 
(2) if r /<v then ~ul,l(x; m k) }- ~ul~l(x; ink), and 

(3) if ~/, v are incomparable then ~ui,t(x; r~ k) t-  n gt,t(x; mk). 
AS before we can easily find ~u~ and {r~ : r/~/',1, some n}. Suppose that we 
have constructed ~q , . . . ,  Vk and {r~k" r /~ T k, some n}, so that (1), (2), (3) 

hold. Suppose that for some ~0, Z ~ L, for every K < 09 there is n < to such that 
(4) ( ~ ~gno q "=rn~" • • q ZXn~-~) (if r /=  (no . . . . .  nk_l) then r / ~ T  k and 

[ ~ ( x ;  r~)]  n N(~o, X) ¢: ~ ) .  
If (4) holds, then by the definition of N(9, X) we can find ~/k+, and 

,~.7. k + l . Tk+l { m~ r / ~ . ,  , some n }, so that (1), (2), (3) hold for ¢/i, • • •, ~/k + ~. However, 

if we really manage to carry out this construction for k < to, then by the 

compactness theorem we get a contradiction with the superstability of T. So 

there is k > 0 such that for every ~, Z ~ L  there is K(~, X) < co such that for 
every n < to, n (4) holds with K replaced by K(9, X). 

Let S =H0<,<~ok[2",2"+'). On k[2",2 "+~) we define a measure #, by 
/~,({r/}) = 1/2 "k for r/~k[2 ", 2"+~), and let/z be the product measure of/z,,  
n < co on S. For ~, X ~ L  let us define 

No(¢,X) = ( f E S :  q =n[C'k(X; rn]~,))] n N(qh X) ~ O}.  

The following claim is easy, so we omit its proof. 

C L A I M .  fl(No(~O , X ) )  = O. 

Now we can use the assumption that I T [ < cov L. There is f E  S such that 
for every ~o, Z ~L,fq~No(~O, Z). Let ~0.(x) = gk(X; r~.)).  We see that for every 
~, X E L ,  there are only finitely many n < to such that [~o.] n N(~o, X) ~ ~ ,  so 
the lemma is proved. 

Now we can finish the proof of Theorem 2.3. By Lemma 2.7 we can 
construct a tree of formulas {tp,(x) : r/E ~'>to } C_ L (A) such that 

(a) ¢ o ( x )  = O(x), 
(b) for r/.~ v, ¢,(x) F- ~(x) ,  ~o,(x) is consistent, 

(c) if r/, v are incomparable then ~,(x) k- ~¢,(x),  and 

(d) for every r /~ " ~ co, ¢, Z E L, for all but finitely many n < co, we have 
N(~, Z) n [~,o<.>] = ~ .  

Let N'(q~, Z) be defined as in Case I. By (d) we see that for every ~, Z ~ L ,  

d(N'(¢,  Z)) is compact, i.e. there is g(~0, Z) ~ °'o9 such that for eve ry fU N'(tp, Z) 
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we have f--ig(~0, Z). The assumptions of Case II imply that I TI < b, so we can 

choose g E '°co such that for every q), Z E L  we have 7g--3g(¢, )(). This means 

that g ~N'(~o, X) for any ~o, X, and so ([3) holds and Theorem 2.3 is proved. 

Let us draw corollaries from Theorem 2.2 (and Fact 2.1). 

COROLLARY 2.8. Every superstable T of power 

< ~ + coy K + min{cov L, b} 

has the extension property and model extension property. 

Corollary 2.8 shows that the powers of To and T~ from § 1 cannot he smaller 
that 2a0 in ZFC only. To [TI] is a "minimally complicated" theory without 

[model] extension property, yet from another point of  view. We have D(To) = 
2 and D(TI) = 3. We can prove 

FACT 2.9. (1) If T is superstable and D(T) = 1, then T has the extension 
property. 

(2) If T is superstable and D(T)_-< 2, then T has the model extension 

property. 

PROOF. We shall prove only (2), as (1) is easier. So let M ~ Nbe models of T 

with Q(M) = Q(N). Clearly it suffices to prove the following. 

(t) If A _ N, (Q(x),A) has T - V  property and O(x)EL(A) is consistent, 
then for some a E 0(~), (Q(x), A U {a }) has T - V  property. 

First notice that if 0(~) tq N ÷ ~ then we are done. Otherwise O(x) forks over 
N, so D(O(x)) < 1. However, if there is no a E0(~) such that (Q(x),A U {a}) 
has T-Vproperty,  then Lemma 2.5 gives us an infinite uniform family of  non- 
algebraic formulas below O(x), so we have a contradiction. 

Let us summarize the information on theories with extension property 

which we have obtained. 
(a) Stable case. If I T I = R0 then T has extension property. There is T of 

power R I without model extension property. 
(b) Superstable case. If I TI < b + coy K + rain{coy L, b} then Thas exten- 

sion property. There is Tofpower  Xl < 2~° without model extension property. 
We have b + coy K + min{cov L, b} < x~, so one can ask what happens 

when b + coy K + min(cov L, b} < I T i < K~. The author suspects that in 
Theorem 2.2, b + c o v  K + min{cov L, b} can be replaced by b. We have the 

following partial result in this direction. 
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FACT 2.10. (1) If  I TI <b ,  T i s  superstable and D(T) < 2, then Tsatisfies 
(LA). 

(2) If  I T I < b, T is superstable and D(T) _-< 3, then T has model  extension 
property. 

PROOF. (1) If  it is not true, then for some A _C ~ and for some consistent 
O(x) ~L(A),  there is no locally isolated p E S(A ) N [0]. We keep the notation 
from the proof  of Theorem 2.3. By Lemma 2.5, and by D(O) <_- 2, we get that 
Lemma 2.7 holds in our case. The rest is easy. 

(2) follows from (1) and the proof  of Fact 2.9(2). 

Although the problem of determining which cardinal can replace the present 
estimation in Theorem 2.2 is open, we have 

COROLLARY 2.1 1. (1) Con(ZFC + "every superstable T of  power < 2 ~o 
satisfies (LA), (EP) and (ME)" + 2 ~0 large). 

(2) Con(ZFC + "there is a superstable T of power RI without model exten- 
sion property" + 2~o large). 

PROOF. (I) Cohen's forcing yields cov K and 2~o large. (2) T~ from Example 
1 is a superstable theory of power x~ without model extension property. See for 
example [M1] or [N] on how to make x~ equal R~ while preserving 2~0 large. 

In cases (A), (B), (C) the proof  of Theorem 2.3 is increasingly complicated 
and relies more and more on the compactness theorem (Lemma 2.7). How- 
ever, the results which we finally obtain are not stronger at all. If  you take 
any two cardinals from {cov K, cov L, b} then you can find a model ~ in 
which one of these cardinals equals R~ and the other R2. Let us note for 
example some of these well-known results (a wider exposition can be found in 
[K], [M l], [M2] or [N]): 

(1) Con(ZFC + c o v  K > b) (forcing with co2 Cohen reals over a model 
of CH). 

(2) Con(ZFC + c o v  K < b) (forcing with col random reals over a model  of 
2 ~° = R2 and MA). 

(3) Con(ZFC + (b + c o v  K < x0) (see [M1] or [N]). 
The following problem seems interesting. If  we have a superstable T in  some 

model  ~ of  ZFC and in ~ ,  T does not have (model) extension property, then 
by adding to ~ I T I +- many Cohen reals we obtain a model 92 in which T has 
extension property. Is the reverse process possible? I.e. isn't it so that if Thas  
extension property in a model ~ of ZFC then, for every 92 _D ~ ,  T has 
extension property in 92? 
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In Example 1, in modifications T6 and T~ of  To and T~ we requested N~'s to 
be disjoint. The reader might wonder if this requirement could be omitted. 
One can see directly that if  Na's are not disjoint, then we lose superstability. 
Another way to see this is as follows. Suppose that we can prove in ZFC that for 
some collection of N,'s of  power coy K covering the real line, the resulting T6 

and T~ are superstable. Then this would hold in a model of  ZFC + coy K < 
(notice also that "being superstable' is absolute). In such a model, however, T~ 
must have model extension property by Corollary 2.8 (because I T~I -- coy K 
here), a contradiction. 

The functions f~, r/E °'2 are the only reason why Ti is uncountable. (Losing 
stability) we can deal with this problem as follows. Instead of  having a distinct 
name for each function f , ,  we can define them uniformly as f~(x), where the 
parameter z runs over a definable subset of  Q. The resulting countable theory T 
satisfies the following. There are models M ¢ Nwith Q(M) = Q(N) such that N 
is a conservative extension of  M, and there is no N ' ~  N with Q(N') = Q(N). 

This answers negatively a question of  Baldwin from [B]. 
Recently the author has strengthened Theorem 2.2 by weakening the 

assumption that T is superstable to "T is stable and x(T) < R,". 
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